skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qiu, Aaron"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Driving in foggy conditions poses high risks to road users due to the reduction of visibility, affecting the drivers’ vision and perception, and making changes in driving behavior, which is one of the most important factors affecting vehicular emissions and fuel consumption. This study analyzes the PTV VISSIM traffic microsimulation outputs for exhaust emissions and fuel consumption of vehicles simulated under adverse weather conditions. This weather-dependent simulation is developed by using the advanced psychophysical car-following model “Wiedemann’s 99,” to flexibly control the driving behavior parameters in various driving conditions. Results show that vehicles under foggy conditions consume more fuel and produce more emissions in comparison with clear sky conditions and other scenarios. With the transition of current cities to smart sustainable cities and by introducing automated vehicles (AVs) to the traditional traffic network and gradually increasing their penetration rate, negative environmental impacts of driving under foggy conditions will be reduced, and improvement in overall mobility of a shared network of autonomous and human-driven is observable. 
    more » « less